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Abstract

In this thesis we explore the effectiveness of neural models that require no task-

specific feature for automatic dementia prediction. The problem is about classify-

ing Alzheimer’s disease (AD) from recordings of patients undergoing the Boston

Diagnostic Aphasia Examination (BDAE). First we use a multimodal neural model

to fuse linguistic features and acoustic features, and investigate the performance

change compared to simply concatenating these features. Then we propose a novel

coherence feature generated by a neural coherence model, and evaluate the predic-

tiveness of this new feature for dementia prediction. Finally we apply an end-to-

end neural method which is free from feature engineering and achieves state-of-

the-art classification result on a widely used dementia dataset. We further interpret

the predictions made by this neural model from different angles, including model

visualization and statistical tests.
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Lay Summary

Early prediction of neurodegenerative disorders such as Alzheimer’s disease (AD)

and related dementias is important in developing early medical supports and so-

cial supports, and may identify ideal stages for testing novel therapeutics aimed

at preventing disease progression. Changes in speech and language patterns can

occur in dementia in its earliest stages and may worsen as the disease progresses.

This has led to recent attempts to create automatic methods that predict dementia

through language analysis. In addition to features extracted from language sam-

ples, previous works have improved the prediction accuracy by introducing some

task-specific features. But task-specific features prevent the model from generaliz-

ing to other tests. Our work focuses on building classification models without any

task-specific features. We explore three approaches and find one such model which

achieves state-of-the-art performance. We also perform detail analyses to interpret

how the best performer makes a prediction.
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Chapter 1

Introduction

Dementia is a progressive cognitive impairment caused by neurodegenerative dis-

ease, which affects more than 46.8 million people around the world [1]. Among

diverse types of dementia, Alzheimer’s disease (AD), which accounts for 60% -

80% of all dementia diagnosis, is among the most financially costly diseases in

developed countries [8]. Although there is not yet a cure for AD, research suggests

that novel therapeutics will be most effective if given early in the disease course

[36].

However, predicting AD especially in its early stages is difficult. A diagnosis

of dementia involves clinical opinion based on functional status, cognitive per-

formance on standardized tests and resource-intensive specialized tests, such as

lumbar puncture or advanced neuroimaging [30]. In developing countries, access

to some or all of these resources may not be available, and this is reflected in the

higher than average rates of undiagnosed dementia in those regions. All around the

world, only approximately 25% of the 46.8 million dementia population receive a

formal diagnosis [1]. Therefore, a non-invasive diagnostic tool that is inexpensive

and easy to administer is of great importance to dementia patients, especially those

in developing countries.

One promising direction is to design a tool that can assist in prediction of pre-

clinical disease by using automated analysis of language. Language is one of the

first facilities afflicted by the disease and subtle changes in language are observed

a year or more before dementia is diagnosed, according to longitudinal studies on
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people with AD [2]. These changes include, for example, low grammatical com-

plexity, limited vocabulary and frequent word finding problems [21].

Given that linguistic deficits are early signs of dementia, researchers have

developed dementia prediction systems based on language by applying machine

learning (ML) and natural language processing (NLP). Most prior work built com-

putational models on the dataset DementiaBank [7], a publicly available dataset

that contains audio recordings and transcripts of participants (people with dementia

and healthy controls) describing the Cookie Theft picture (Figure 3.1). Prior work

used not only acoustic features and various linguistic features but also task-specific

features such as information units. Information units [9] are objects and actions

appearing in the picture (e.g., mother, stool, overflowing, and drying), which are

usually pre-defined by human experts. Information unit features measure how well

a participant captures key concepts in the picture. Based on these task-specific

features as well as linguistic and acoustic features, prior models using traditional

classification methods such as logistic regression have been shown to give reliable

AD prediction [12, 28]. Although the task-specific features are effective for de-

mentia prediction, one major disadvantage is that they are specific to a particular

picture. If participants are asked to describe a different picture, information units

in the picture need to be re-defined.

The advances in neural networks, especially the recent deep neural models,

undermine the necessity of feature engineering. The interactions between neurons,

the hierarchical network structure, and an appropriate loss function make the deep

models capable of tackling complex tasks even with raw data as input. The power

of neural models is likely to make up the absence of some well-designed features.

In this thesis, we explore neural models for dementia prediction without using task-

specific features. We delve into three different directions and our contributions can

be summarized as below.
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1.1 Contributions

1.1.1 Fusing Features from Different Modalities

We propose to use a neural network model for combining task-agnostic multimodal

features from prior work. Previous work [12, 28] extracted various linguistic and

acoustic features for dementia prediction. Then, they combined all these features

by simple concatenation. In this thesis, we combine the two groups of features

by using the neural multimodal embedding framework [22]. We demonstrate that

combining multimodal features in this way allows obtaining performance compa-

rable to prior work using feature selection.

1.1.2 A Novel Feature: Coherence Score

We extract a new type of task-agnostic features by a neural network model. Pre-

vious literature [10, 11, 23] has shown that people with dementia tend to have

problems with discourse coherence including impairment in global coherence, dis-

ruptive topic shift, frequent use of filler phrases, and less use of connective words.

Linguistic features in previous studies capture language deficits with respect to

certain aspects of discourse coherence at a lexical and syntactic level (e.g., word

repetitiveness, syntactic complexity, and vocabulary richness). However, no prior

work has attempted to investigate semantic level of discourse coherence for pre-

dicting dementia – specifically, the patterns of how people repeat entities to make

a coherent speech. In this thesis, we compute discourse coherence scores based on

entity transition patterns by using the neural coherence model [32], and apply them

for dementia prediction.

1.1.3 An End-to-end Neural Model: Hierarchical Attention
Networks

We propose to use a neural network model in an end-to-end manner to avoid any

task-specific features and alleviate the problem of manual feature engineering. We

apply a neural framework, called Hierarchical Attention Networks (HAN) [38] for

the task, and obtain results comparable to traditional models that use task-specific

features. By including a demographic feature (age), our model achieves state-of-
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the-art performance, improving the classification accuracy of the top-performer

traditional method which also uses age, from 84.4% to 86.9%. With the attention

mechanism in HAN, we analyze the model predictions, and provide some insights

on their interpretation.

We also apply HAN to a dementia blog corpus, and discuss the results in com-

parison to prior work. In essence, on this corpus of written text, the neural method

is not a competitive solution.

1.2 Reproducibility
The code to reproduce experiments in Chapter 4 and Chapter 5 is available at https:

//github.com/arankong/dementia classifier and the code to reproduce all results

and the corresponding plots in Chapter 6 is at https://github.com/arankong/han.

1.3 Thesis Overview
The rest of the thesis is organized as follows: in Chapter 2 we review prior studies

that focus on traditional ML and NLP approaches for dementia prediction. We also

provide backgrounds on multimodal learning and discourse coherence models. Af-

ter that, in Chapter 3 we provide an overview of datasets used for our experiments.

Then, the three contributions are each described in their own chapters (4, 5, 6, re-

spectively). Lastly, in Chapter 7 we conclude and suggest some future directions.
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Chapter 2

Related Work

Computational approaches for automatic dementia prediction have received grow-

ing attentions in recent years. In this chapter, we first discuss previous computa-

tional works for dementia prediction (Section 2.1). Then, to provide some back-

ground to the neural models used for our studies, we review multimodal learning

methods (Section 2.2) and discourse coherence models (Section 2.3).

2.1 Computational Approaches to Dementia Prediction
Prior research has shown that NLP and ML techniques that exploit various features

can predict dementia by classifying dementia patients from healthy controls.

Ahmed et al. [3] proposed features that were helpful for identifying dementia

from speech, using data collected in the Oxford Project to Investigate Memory and

Aging (OPTIMA) study. They found that language was progressively impaired as

the disease progressed and suggested using semantic, lexical content and syntactic

complexity features for classification.

Orimaye et al. [33] used diverse machine learning methods with lexical and

syntactic features to distinguish between dementia patients and healthy adults on

the DementiaBank dataset [7]. They compared five different classifiers including

support vector machines (SVMs), naive Bayes, decision trees, neural networks and

Bayesian networks, and reported that SVMs showed the best performance with a

F-score of 74%.
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In another study, Al-Hameed et al. [4] extracted acoustic features from the au-

dio files of the DementiaBank dataset, building a regression model to predict Mini

Mental State Examination (MMSE) scores used for dementia prediction (ranging

from 0 to 30). This work used only acoustic features, and their regression model

predicted MMSE scores with a mean absolute error less than 4.

Fraser et al. [12] explored a broad spectrum of both linguistic and acoustic

features, demonstrating the necessity of feature selection. They found that optimal

performance was obtained when 35-50 features were used, and the performance

dropped off dramatically with a feature set size larger than 50. They achieved an

accuracy of 81.96% in distinguishing individuals with AD from those without.

As briefly mentioned in the introduction, the DementiaBank is associated with

a set of human-defined information units representing key components of the Cookie

Theft picture, such as subjects, objects, locations and actions [9]. Upon the infor-

mation units, Masrani [28] proposed a novel feature group called spatial neglect

features. They vertically split the picture into two halves and computed features

that measure spatial neglect, e.g., count of mentions of any information unit for

each region. Combing their new feature group with linguistic, acoustic, informa-

tion unit features and the demographic feature (age), followed by a feature selection

step, they achieved the accuracy of 84.4%.

Our study differs from previous approaches in that, we aim to build models

without any task-specific features, while achieving comparable or even better per-

formance.

2.2 Multimodal Learning
Our attempt to fuse features from different modalities is inspired by the research

field of multimodal learning. The multimodal representation can be divided into

two types, i.e., joint representation and coordinated representation. The idea of

joint representation is to build one common representation for different modalities.

The simplest way is to concatenate features from different modalities, which is

also known as early fusion. But this naive concatenation does not help us gain any

insights into the data. More advanced method is to train a multimodal autoencoder

[31], where they adopted an unsupervised training scheme to learn a shared repre-
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sentation from different modalities. Besides, Zadeh et al. [39] made a tensor out of

the features from 3 modalities, and used the 3D tensor as the joint representation.

The other type of multimodal representation, namely coordinated represen-

tation, aims at building different representations for each modality while putting

certain constraints on these representations. The constraints include similarity-

based methods (e.g., cosine distance), structure constraints (e.g., orthogonality)

and correlation maximization like Canonical Correlation Analysis (CCA) [17]. In

particular, a learning approach, joint embeddings, is very successful in building

coordinated representations of two modalities [22].

An ablation study on the DementiaBank dataset shows that the classification

accuracy of logistic regression with linguistic features is 0.740, whereas the accu-

racy drops to 0.713 when both linguistic features and acoustic features are used,

indicating that there are more irrelevant features in the acoustic feature group.

Therefore, we prefer coordinated multimodal representations to one shared rep-

resentation for the linguistic modality and acoustic modality. Specifically, we use

a similar training process as Kiros et al. [22]’s.

2.3 Coherence Models
Modelling document coherence is an active area of NLP. There are various coher-

ence modelling methods: entity-based models, graph-based models [16], models

based on discourse relations [26], models based on distributed sentence represen-

tations [25], etc. We use a neural entity-based coherence model [32] for the coher-

ence feature extraction because it is conceptually easy and has obtained high per-

formance in many coherence evaluation tasks. In entity-based coherence models,

document is about entities (nouns could serve as entity candidates) and coherence

is created by repeated entity mentions [15]. Barzilay and Lapata [6] proposed an

entity grid model that computes coherence score based on entity transitions (the

grammatical role switches across sentences). Nguyen and Joty [32] made a neu-

ral version of the entity grid model. They transformed the grammatical role of

each entity in grid into distributed representation, and used convolutional neural

networks (CNN) [24] to capture entity transition patterns. Their model achieved

high performance in several tasks like sentence ordering and summary coherence

7



rating. We use this neural coherence model to generate coherence scores for the

DementiaBank samples.
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Chapter 3

Datasets

We use two dementia datasets for this work: one consists of samples of spoken

language and the other consists of samples of written language. We detail the

spoken one, the DementiaBank dataset below, which is used throughout this thesis

(in Chapter 4, 5 and 6). The dataset of written samples is used only in Chapter 6

and will be introduced in Section 6.2.5. Besides, we also use two large corpora

for training the neural coherence model and we introduce them along with the

coherence model in Section 5.2.1.

3.1 DementiaBank
The DementiaBank corpus was collected for the study of communication in demen-

tia, between 1983 and 1988 at the University of Pittsburgh [7]. It contains interview

recordings and manually-transcribed transcripts of English-speaking participants

describing the Cookie Theft picture (Figure 3.1). The participants are categorized

into dementia patient and healthy control groups. Of the 309 dementia samples,

257 samples are classified as possible/probable AD, and the remaining samples as

other types of dementia. Our study uses only the 257 AD samples and 242 healthy

elderly control samples. Statistics about the DementiaBank samples used in this

study are listed in Table 3.1.
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Figure 3.1: The Cookie Theft picture.

Table 3.1: Demographics of the DementiaBank dataset.

Diagnosis Samples Mean Words Mean Age

AD 257 104.98 (s=59.8) 71.72 (s=8.47)
Control 242 113.56 (s=58.5) 63.95 (s=9.16)

10



Chapter 4

Multimodal Embedding for
Feature Fusion

In this chapter, we describe our experiment on using a neural network model for

combining existing multimodal features. Prior work [28] showed effectiveness of

a variety of linguistic and acoustic features for dementia prediction. To obtain a

combined multimodal feature representation, they used a simple concatenation as

a fusion mechanism, which is easy to implement. However, this mechanism can

wind up being very high dimensional, and could be less effective when features

have different frame rates [27]. Here, we propose to use a joint embedding method

based on pairwise ranking.

In Section 4.1 we explain our joint embedding method using pairwise ranking

in detail. After that, in Section 4.2 we compare the performance of this feature

fusion scheme for dementia prediction against the simple concatenation method.

We discuss the results in Section 4.3.

4.1 Our Joint Embedding Method
To combine features in different modalities, we use a joint embedding method

adapted from [22]. The main idea in this method is pairwise ranking – a matched

pair of linguistic and acoustic embeddings, or the original pair of linguistic and

11



acoustic embeddings from the same data sample1, should have a shorter distance

than random pairs. To implement this idea, our model is composed of three parts:

building linguistic representations (embeddings), acoustic representations, and co-

ordinating the two representations. Figure 4.1 shows the model architecture.

(a) Proposed joint embedding method (b) Pairwise ranking loss to minimize dis-
tance between matched pairs of samples

Figure 4.1: Neural feature fusion frameworks.

First, to build linguistic embeddings, we begin with extracting linguistic fea-

tures from texts as in [28]. These features (N = 99 in total) include parts-of-

speech (N = 15), context-free-grammar rules (N = 43), syntactic complexity

(N = 27), vocabulary richness (N = 4), psycholinguistic (N = 5), and repet-

itiveness (N = 5). Then, we project these features into the embedding space of

dimension m by using an encoder. This encoder is used for linear transformation

(R99 → Rm), and hence it consists of one linear layer without an activation func-

tion. We choose 50 as the embedding size m for our experiment because in [28],

the performance of dementia prediction drastically dropped when using more than

50 features at the feature selection step.

In the same fashion, we build acoustic embeddings. We extract acoustic fea-

tures from audio recordings following [28]. The acoustic features (N = 172 in

total) were derived from speech samples by using the Mel-frequency Cepstral Co-

efficient (MFCC) technique [20]. We use another encoder (R172 → Rd) for linearly
1Note that every sample in the DementiaBank dataset provides one matched linguistic and acous-

tic embedding pair.
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transforming the acoustic features into acoustic feature embeddings. The embed-

ding size d is also set to 50.

After obtaining linguistic and acoustic embeddings, we coordinate these em-

beddings by using a loss function based on pairwise ranking as in [22]. As shown in

Figure 4.1b, given a matched pair of features (linguistici, acoustici), the distance

in the embedding space between linguistici and acoustici should be smaller than

the distance between linguistici and any other acoustic embeddings acousticj ,

and the distance between acoustici and any other linguistic embeddings linguisticj .

For each matched pair, we compute the loss against all other pairs. The loss func-

tion for matched pairs (linguistici, acoustici) and (linguisticj , acousticj) is de-

fined as

L(θ) = max{0, α− d(linguistici, acoustici) + d(linguistici, acousticj)}

+max{0, α− d(linguistici, acoustici) + d(linguisticj , acoustici)},

where θ denotes learnable parameters of our encoders, α is an arbitrary positive

constant, i 6= j, and d(x, x′) is a distance measure. We use cosine similarity as the

distance measure in our experiment.

After training this neural model that consists of two encoders using the pairwise

ranking loss, we obtain coordinated linguistic and acoustic embeddings from raw

linguistic and acoustic features. These embeddings are then used for dementia

prediction.

4.2 Experiment

4.2.1 Experiment Settings

The proposed method results in two embeddings: linguistic and acoustic. To evalu-

ate the proposed method, we use the resulting embeddings as features for dementia

prediction. Specifically, we build logistic regression classifiers using three different

feature groups. The EMBEDDED-L model uses only the linguistic embeddings and

the EMBEDDED-A model uses the acoustic embeddings alone. The third model,
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EMBEDDED-L&A, uses both linguistic and acoustic embeddings by concatenating

them. Note that we do not conduct feature selection for all the models above since

our features are already compacted.

We compare these embedding models against three types of corresponding

baselines that use task-agnostic features (i.e., linguistic and acoustic features) from

prior work. These baselines include BASELINE-L, BASELINE-A, and BASELINE-

L&A. BASELINE-L uses only the original linguistic features. BASELINE-A uses

the original acoustic features. BASELINE-L&A combines those two types of fea-

tures by concatenating them. We perform feature selection for these baseline mod-

els as in [28]. We use Pearson’s correlation coefficients to select top k features.

In addition, we also compare our models to neural network based baselines

EMBEDDED-SHARED that build one shared representation for linguistic and acous-

tic features. To do that, we first combine the two groups of features by concate-

nating them, and then use an autoencoder to construct a shared embedding. The

encoder embeds the concatenated features (N = 271, total size of the two feature

groups) into a hidden space of dimension h. We use a linear layer with the ReLU

activation function for the encoder (R271 → Rh). Then the decoder (Rh → R271)

reconstructs the combined features from its hidden representation. We compute the

L2-norm as the reconstruction loss. The vector in the hidden space is regarded as

one shared representation of the linguistic and acoustic features, and we use this

vector as features for dementia prediction. We set the dimension of hidden space to

50 and 100, denoting by EMBEDDED-SHARED 50 and EMBEDDED-SHARED 100

respectively.

We perform 10-fold cross validation following the practice in prior work [12,

28]. Because the weights of our encoders are randomly initialized, we report the

average performance on ten different runs as the performance of our model.

4.2.2 Experiment Results

Our experiment results are listed in Table 4.1 and Table 4.2. We first compare

models that use embeddings against models that use raw features. As shown

in Table 4.1, models using embeddings from our joint method (EMBEDDED-L,

EMBEDDED-A, and EMBEDDED-L&A) drastically outperforms models using their
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corresponding raw features (BASELINE-L, BASELINE-A, and BASELINE-L&A).

This suggests that embeddings from our method contain more predictive informa-

tion than raw features.

This pattern is also observed after performing feature selection on the baseline

models using raw features. Our models EMBEDDED-L and EMBEDDED-A im-

prove over BASELINE-L 50 and BASELINE-A 50 which select 50 important fea-

tures by using Pearson’s correlation coefficient. EMBEDDED-L and EMBEDDED-

A also outperform BASELINE-L BEST and BASELINE-A BEST which show best

performances among all k values for feature selection. In addition, EMBEDDED-

L&A shows improvement over baselines selecting 50 features (BASELINE-L&A

50) and 100 features (BASELINE-L&A 100). EMBEDDED-L&A also shows per-

formance comparable to EMBEDDED-L&A BEST, which selects 47 features. These

results indicate that our joint embedding method generates linguistic and acoustic

embeddings that perform in a similar degree to the effect of feature selection.

Table 4.1: Results of the multimodal feature embedding evaluation. Num-
bers in the model name indicate how many features are used after feature
selection. Numbers in parenthesis show the change in performance com-
pared to the corresponding baseline.

Models Accuracy F-score

Baseline-L no feature selection 0.728 0.738
Baseline-L 50 0.723 0.732
Baseline-L best (k = 60) 0.740 0.747
Embedded-L 50 0.746 (+0.006) 0.749 (+0.002)

Baseline-A no feature selection 0.567 0.578
Baseline-A 50 0.499 0.522
Baseline-A best (k = 152) 0.601 0.623
Embedded-A 50 0.615 (+0.014) 0.625 (+0.002)

Baseline-L&A no feature selection 0.665 0.671
Baseline-L&A 50 0.699 0.702
Baseline-L&A 100 0.635 0.653
Baseline-L&A best (k = 47) 0.709 0.719
Embedded-L&A 100 0.708 (-0.001) 0.708 (-0.011)

Table 4.2 shows the comparison between EMBEDDED-L&A and baselines us-
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ing both linguistic and acoustic features. BASELINE-L&A models use raw linguis-

tic and acoustic features with or without using feature selection, and EMBEDDED-

SHARED models use a simple autoencoder to transform concatenated features into a

shared embedding. As seen from the results, our model EMBEDDED-L&A outper-

forms all other baseline models using both groups of features. The neural baselines,

EMBEDDED-SHARED 50 and EMBEDDED-SHARED 100 are not as competitive as

our joint embedding method.

Table 4.2: Results of the shared representation evaluation.

Models Accuracy F-score

Baseline-L&A no feature selection 0.665 0.671
Baseline-L&A 50 0.699 0.702
Baseline-L&A 100 0.635 0.653
Embedded-shared 50 0.677 0.679
Embedded-shared 100 0.666 0.669
Embedded-L&A 100 0.708 0.708

4.3 Discussion
Our experiment results show that linguistic and acoustic embeddings generated

by our joint embedding method are more informative than raw features or these se-

lected important features. The results suggest that the pairwise ranking idea behind

our method is capable of adding more predictive information when performing di-

mension reduction in our neural architecture than using feature selection, especially

for the same feature dimension.

However, the improvements over baselines using feature selection with the best

k are not huge especially for dementia prediction only using linguistic features.

When using both linguistic and acoustic features, the baseline using best k features

slightly outperforms our model. This could mean that using our joint embedding

method could be considered as an alternative to attempting to find the best k for

feature selection.
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Chapter 5

A Novel Feature: Coherence
Score

Neural network models can be used for devising a new feature type for dementia

prediction. In this chapter, we experiment on discourse coherence for dementia

prediction. We use an existing neural network based NLP approach for computing

discourse coherence.

People with dementia have been reported to show impairment in discourse co-

herence such as disruptive topic shift, frequent use of filler phrases, and less use

of connective words [10, 11, 23]. The linguistic features used in previous compu-

tational studies for dementia prediction capture language deficits including some

discourse coherence at a lexical and syntactic level (e.g., word repeat, syntactic

complexity, and vocabulary richness). However, no prior work has attempted to

use the overall coherence level of a speech for dementia prediction. In this chap-

ter, we compute discourse coherence scores using a state-of-the-art neural based

coherence model, and apply them for dementia prediction.

In Section 5.1, we briefly explain the coherence model we use for obtaining the

discourse coherence feature. In Section 5.2, we evaluate this new type of feature

for dementia prediction. In Section 5.3, we discuss the results.
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5.1 A Neural Coherence Model
We compute discourse coherence scores using the neural network based coherence

model proposed by Nguyen and Joty [32], which operationalizes local coherence

of a discourse segment based on the Centering theory [15]. The Centering theory

claims that certain entities mentioned in an utterance are more central than others

and that this property imposes constraints on a speaker’s use of different types of

referring expressions. They also argue that the compatibility between centering

properties of an utterance and choice of referring expression affects the coherence

of discourse. Based on the theory, Nguyen and Joty [32]’s model calculates coher-

ence scores that measure how sentences are bound together to deliver a meaning

as a whole by capturing entity transition patterns. We use their model because

it shows the state-of-the-art performance among the systems that implement dis-

course coherence based on the Centering theory.

To capture entity transition patterns, the model first requires an entity grid table

of input data. A transition of one entity is defined as the grammatical role switches

of the entity across sentences. For example, in a document that consists of three

sentences, if an entity is mentioned as the subject of the first sentence, the object of

the second sentence, and not mentioned in the third sentence, its transition can be

denoted as {S, O, -}. The transitions of all entities in a document are converted into

an entity grid table (see Figure 5.1), and used as the input to the neural network

coherence model.

The neural network coherence model is based on a convolutional neural net-

work (CNN) [24] for computing coherence scores of a text in an end-to-end fashion

(see Figure 5.2). The intuition of this neural coherence model is that each convolu-

tional filter tries to detect a specific transition pattern (e.g., {S-S-O-X} for a coher-

ent text) which is informative for determining the coherence level. The CNN layer

performs convolution operation on the transitions of each entity independently,

followed by a max-pooling and a linear layer that generates a real-valued score.

During training, a pair of documents, i.e., the original document (considered as co-

herent) and its randomly permuted version (considered as incoherent) are fed to the

coherence model at the same time. The model outputs two scores, φ(original|θ)
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Figure 5.1: A document sample and the corresponding entity grid table. The
figure is taken from the original paper [32]. S denotes subject, O de-
notes object, X denotes other and - means the word is absent from the
sentence.

and φ(permuted|θ). A pairwise ranking loss defined as

L(θ) = max{0, 1− φ(original|θ) + φ(permuted|θ)}

forces the model to produce a higher score for the original document.

After training the model, we compute coherence scores for data samples in the

DementiaBank dataset. Then, we use the scores for predicting dementia as features

.

5.2 Experiment

5.2.1 Experiment Settings

To train the coherence model, we use three different corpora: the DementiaBank

dataset, the Wall Street Journal (WSJ) dataset [34], and the Visual Storytelling
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Figure 5.2: Neural coherence model. The figure is taken from the original
paper [32].

(VIST) dataset [19]. First, we use the training data of DementiaBank for building

the coherence model. However, the DementiaBank dataset might be too small for

learning the deep neural model. Therefore, we also try larger datasets. We use the

WSJ dataset for training as in [32]. Additionally, to experiment with a dataset that

is more similar to DementiaBank than WSJ in terms of language style, we use the

VIST dataset in which participants were asked to write a story based on a sequence

of pictures. The statistics of the three datasets used for model training are shown

in Table 5.1. For large datasets WSJ and VIST, we make a 50%: 10%: 40% split

for training, validation and test according to [32]. For DementiaBank, we perform

10-fold cross validation.

Table 5.1: Statistics on the DementiaBank, WSJ and VIST datasets. We com-
pute the number of samples as # Doc., and the average number of sen-
tences per document as Avg. # Sen.

Dataset # Doc. Avg. # Sen.

DementiaBank 499 12.8
WSJ 2431 21.8
VIST 50197 5
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To follow the pairwise ranking training scheme, we generate 20 random per-

mutations for each document. One permuted version consists of all the sentences

of an original document in a rearranged order. The original document is treated as

coherent, and its permutations are regarded as incoherent. Then, we use a pair of

an original document and its permuted version as input for training.

We set model hyperparameters as suggested by the original paper of the model

[32]. We set the number of filters to be 150, max-pooling size to be 6 and entity

embedding size to be 100. The dropout ratio is 0.5, the mini batch size is 64, and

the optimizer is RMSprop [18]. We use early stopping with a patience setting of 5

epochs.

All trained models on the three datasets reported test accuracy of higher than

75%. Based on these trained models, we compute coherence scores for Dementia-

Bank, and use the scores for dementia prediction as features.

To investigate the effectiveness of the proposed feature, we use logistic re-

gression for classification. We evaluate the performance when coherence score is

the only feature, and when it is combined with other task-agnostic features (i.e.,

linguistic and acoustic features). Our baselines include majority class baseline, a

model using only linguistic features, a model using only acoustic features, and a

model using both linguistic and acoustic features.

5.2.2 Experiment Results

Table 5.2 reports the results. The first row in the table represents our baseline mod-

els without the coherence feature. In particular, 0.515 is the accuracy of the major-

ity class classifier. The coherence score, when being the only feature, can improve

the accuracy by as much as 4%. When trained on DementiaBank, the coherence

feature has a boost of 0.4% when combined with linguistic features. However, in

other cases it has no effect, or even hurts the performance, when combined with

other task-agnostic features.

5.3 Discussion
Our new coherence feature does not perform well for dementia prediction although

using the feature outperforms the majority class baseline. Here, we investigate the
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Table 5.2: Results on the effectiveness of the coherence feature. The perfor-
mance metric is accuracy. Numbers in parenthesis show the change in
performance. L&A features denote linguistic and acoustic features.

Models No other features Linguistic Acoustic L&A features

Baseline 0.515 0.740 0.601 0.713
DementiaBank 0.555 (+0.04) 0.744 (+0.004) 0.599 (-0.002) 0.711 (-0.002)
WSJ 0.543 (+0.028) 0.734 (-0.006) 0.605 (+0.006) 0.709 (-0.004)
VIST 0.527 (+0.012) 0.734 (-0.006) 0.603 (+0.004) 0.713 (-0)

coherence score feature more closely.

Our assumption behind using the coherence feature is that AD patients would

give a less coherent picture description than healthy elderly people. To verify this

assumption, we examine the relationship between coherence scores and AD. Figure

5.3 represents the distributions of coherence scores for AD patients and healthy

controls.

Figure 5.3: Distributions of coherence scores for AD patients and healthy
controls. x-axis denotes coherence score and y-axis denotes probability
density.

From the graphs, we can see that the distributions of both groups look alike in

all three cases, which indicates that the coherence scores do not have much predic-

tive power to distinguish AD patients from healthy controls. Our coherence model

is based on the idea that referring to the same entities shows some patterns related
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to discourse coherence. However, describing the Cookie Theft picture does not

seem to require mentioning the same entity repeatedly too many times. Therefore,

it is possible that dementia does not greatly affect this type of coherence which can

be captured by the model when describing the Cookie Theft picture.
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Chapter 6

An End-to-end Neural Model:
Hierarchical Attention Networks

In this chapter we detail our experiments of using Hierarchical Attention Networks

(HAN) [38] for dementia prediction. HAN is an end-to-end neural network model,

which allows avoiding any feature engineering. It has been very successful in sev-

eral text categorization tasks like sentiment estimation [40] and topic classification

[37].

In Section 6.1 we introduce the original HAN model and our modified version.

Then, in Section 6.2 we evaluate HAN models and baselines on the DementiaBank

dataset, and test their performance when using only small portions of the dataset.

Particularly, in Section 6.2.4 we analyze the information captured by the attention

mechanism. We further compare the performance of the HAN model and one

traditional model on a written text dataset in Section 6.2.5. Finally in 6.3 we discuss

our work on applying HAN to dementia prediction.

6.1 Hierarchical Attention Networks
Figure 6.1 illustrates the overall architecture of the HAN model for dementia pre-

diction. The model input are words from one interview sample (i.e., a description

of the Cookie Theft picture). The model output is the probability distribution over

two categories, AD and healthy. The model consists of a word sequence encoder, a
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word-level attention layer, a sentence encoder and a sentence-level attention layer.

We briefly introduce the functionality of each layer. For more details, refer to

[38]. The word encoder uses the bidirectional GRU [5], an efficient implemen-

tation of recurrent neural network (RNN). It encodes each word in one sentence

into a hidden vector, given the context of other words in the sentence. Then the

word-level attention layer puts different weights on each word vector, producing a

weighted hidden vector of the sentence. Once we get all the sentence vectors of

the input sample, we feed them into another bidirectional GRU, i.e., a sentence en-

coder. This sentence encoder along with the sentence-level attention layer builds a

weighted vector (denoted by v in Figure 6.1) for the whole document, which is the

latent representation of an input sample by applying attention mechanism to both

word level and sentence level. Finally a linear layer projects v to a 2-dimensional

vector, on which a softmax operation is performed. The output is the probability

distribution for AD and healthy. Negative log likelihood of the correct label is used

as the training loss.

We evaluate the performance of two models, one is the original HAN model

and the other incorporates demographic information by concatenating v with the

age of the interviewee. Since the scale of age ([50, 90] in our dataset) is much

larger than the values of elements of v (typically in [-1, 1]), we standardize the age,

making it zero mean and unit variance before concatenating it with v.

6.2 Experiment

6.2.1 Experiment Settings

As in the previous two chapters, we perform 10-fold cross validation. The reported

performance is an average across the 10 folds. For evaluation metrics, we compute

prediction accuracy, precision, recall and F-score.

The age is an important predictor of dementia according to Gao et al. [14].

Our demographic-based baseline uses only the ages of participants as features

to demonstrate the predictiveness of the age feature. In addition to the simple

demographic-based baseline, five models are tested for comparison: the model by

Fraser et al. [12]; the model by Masrani [28] which obtained the best results among
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Figure 6.1: Hierarchical attention network for dementia prediction.

previous studies; a bidirectional GRU model; and the two HAN based models men-

tioned before. In Table 6.1 we list different feature groups leveraged in the tradi-

tional methods.

Table 6.1: Features used by traditional methods. Info: information unit fea-
tures. Spatial: spatial neglect features.

Dataset Methods Linguistic Acoustic Info Spatial Age

DementiaBank
Age only × × × × X
Fraser et al. [12] X X X × ×
Masrani [28] X X X X X

Dementia Blog Masrani et al. [29] X × × × ×

The bidirectional GRU model has the same structure as the word encoder of

our HAN model, including the word level attention. Instead of using a sentence
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encoder, it builds a document representation via a max-pooling operation across

sentence embeddings. The document representation is fed to a linear layer and

softmax function to produce the prediction. We consider this bi-GRU model as a

baseline to investigate the effect of the hierarchical architecture of the HAN model.

To ensure the best results, all five approaches involve a model selection on

the training data, within each step of the 10-fold cross validation procedure. For

the first two traditional models, they select k features with the highest Pearson’s

correlation coefficients between each feature and the binary class in the training

set. This subset of features are used for building the classifier. For the bi-GRU

baseline and the HAN based models, within the training set we further reserve

10% of the samples for validation. We then train a model on the remaining training

samples for many iterations, storing the model parameters after each iteration. The

validation data is used for selecting the model that achieves the lowest validation

loss.

For the hyper parameters of the HAN models, we set the word embedding

dimension to be 300 and the GRU dimension to be 100. The word embeddings

are initialized randomly. For training, we use SGD (stochastic gradient descent)

with momentum of 0.9 and learning rate of 0.1. The bi-GRU baseline has the same

setting as the HAN models. Those hyper parameters are not fine-tuned.

6.2.2 Experiment Results on DementiaBank

Table 6.2 summarizes the results. The HAN model achieves performance of 0.815

in both accuracy and F-score. When combined with the age feature, the HAN-

AGE model resultes in a remarkable boost in performance, 2.5% improvement

in accuracy and 3% improvement in F-score over Masrani [28]. In addition, the

HAN model shows a significant increase in performance compared to the bi-GRU

baseline, demonstrating the higher capacity as a result of leveraging hierarchy in

HAN.

6.2.3 Analysis of Effects of Dataset Size

In general, training deep neural network models require large data. To investigate

if the HAN models are robust to the size of the training data, we evaluated the two
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Table 6.2: Binary classification with 10-fold cross-validation. Note that re-
sults of Fraser’s model and Masrani’s model are from the original papers.

Model Accuracy Precision Recall F-score

Baseline (age only) 0.595 0.591 0.729 0.653
Fraser et al. (no age) 0.820 - - -
Masrani (with age) 0.844 - - 0.846
bi-GRU baseline 0.748 0.750 0.811 0.768
HAN 0.815 0.839 0.818 0.815
HAN-AGE 0.869 0.859 0.904 0.876

HAN-based models and Masrani’s model from the last experiment with different

proportions of the dataset. We also included a logistic regression classifier with age

being the only feature. Figure 6.2 reports test accuracy when we repeated the previ-

ous experiment with 5%, 15%, 25%, 50% and 75% of the original DementiaBank

dataset. For each proportion setting, we ran 5 independent experiments (randomly

selecting the target subset of the data) and computed the mean and standard de-

viation. We can see that age is very informative, since a majority class classifier

would have an accuracy around 0.5. Note that the performance of HAN drops

dramatically when limited training data is used, whereas the HAN-AGE model is

much less sensitive to the size of training data. The HAN-AGE model maintains a

relatively high performance even with only 5% of the data samples.

6.2.4 Analysis of Attention

During the training process, the attention mechanism makes the HAN model learn

which words are important in predicting a given label. To explore this informa-

tion captured by the attention mechanism, we first performed a qualitative analysis

by visualizing the hierarchical attention layers on a small subset of our data (see

Figure 6.3).

In the visualization, each line represents a sentence. Blue denotes the sentence

attention weight and red denotes the word attention weight. Figure 6.3 shows that

the model tends to select words like overflowing, stool, mother, and

drying, and their corresponding sentences. Interestingly, these words belong to
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Figure 6.2: Test accuracy by varying training data proportions.

the set of information units defined by human experts for the Cookie Theft picture.

To analyze how much information captured by the attention mechanism overlaps

with the human defined information units, we performed further quantitative anal-

ysis.

In particular, we performed a statistical test to investigate if HAN pays more

attention to information unit words, compared to other words. In order to do this,

we considered two categories to which every word token1 in our dataset belongs to:

(i) the word is either in the set of information unit words or not (ii) the word is the

most attended in its sentence or not. We then went through all the word tokens in

the dataset and counted the frequencies of these two categories. Table 6.3 shows the

resulting contingency table. Now the χ2 test can tell us whether the two categories

are dependent on each other. More technically, it can tell us whether there is a
1A word token is a specific occurrence of a word type in a text, for instance the text “the boy is

telling the girl but the girl is not listening” contains 8 word types and 12 word tokens.
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(a) Sample id: 059-2 Diagnosis: control Prediction: control

(b) Sample id: 007-3 Diagnosis: AD Prediction: AD

Figure 6.3: Visualization of attention.

statistical significant difference between the expected frequencies (in parenthesis)

and the observed frequencies in the two categories.

Table 6.3: Contingency table (numbers in parenthesis are expectation values).

Most emphasized Not most emphasized Total

Information unit 1481 (823) 7599 (8257) 9080

Non information unit 4889 (5547) 56270 (55612) 61159

Total 6370 63869 70239

30



The result χ2 = 663, p < 0.00001 shows that the two categories are dependent

on each other, i.e., information unit does affect the attention level, with the number

of information unit words being the most emphasized (1481), being much bigger

than its expectation value (823). So HAN appears to be able to capture similar

information to the one specified by human experts.

Now an interesting question that is still open is whether the attention model is

uniformly paying more attention to all the information unit words or it is focusing

on a specific subset of the information unit words. To answer this question, we

define and compute the attention frequency and the random frequency for each

of the 20 human-defined information units. More specifically, for an information

unit word, the attention frequency was computed as the number of times it was the

word with the highest word attention weight in a sentence. Let Sw denote the set of

all sentences containing word w and weight(c, s) be the attention weight of word

token c in sentence s, we can formalize the computation of attention frequency for

word type w as

Attention-Frequency(w) =
∑
s∈Sw

I[w = argmax
c

weight(c, s)],

where I is an indicator function.

In contrast, the random frequency was computed as the expected number of

times the word would have the highest word attention weight, if weights were

assigned randomly within each sentence. Therefore it is defined as follows:

Random-Frequency(w) =
∑
s∈Sw

1

|s|
,

where Sw denotes the set of all sentences containing word w and |s| is the length

of the sentence. The rationale is that if attention weights are assigned at random, a

word in a sentence will have the highest attention with probability 1/|s|.
In Figure 6.4, the x-axis are 20 human defined information units and y-axis

shows their respective frequencies. The results indicate that the model does not

attend to all information unit words uniformly. It strongly attends to words like

woman, window, stool, sink, water, wash, cookie, exterior
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and plate, but pays less attention to words like dishes, boy, girl, etc.

than what would be expected by their random appearance. Currently, we do not

have a satisfactory explanation for why the word attention model is attending more

to that specific subset of information unit words.

Figure 6.4: Attention frequency vs. random frequency.

6.2.5 Evaluation on the Blog Corpus

We evaluate HAN on the Dementia Blog Corpus to see how it performs on written

language. The Dementia Blog Corpus was created by Masrani et al. [29] by col-

lecting blog posts written by authors with and without dementia. In particular, they

scraped the text of 2805 posts from 6 public blogs up to April 4th, 2017. Three

blogs were written by dementia patients, and three written by family members of

dementia patients were used as control. There are a total of 1654 samples written

by persons with dementia and 1151 from healthy controls. Table 6.4 summarizes

statistics of the Dementia Blog dataset.

We compare our model to Masrani et al. [29]’s, which built and tested tradi-

tional models for predicting dementia on the blog dataset using only the linguistic
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Table 6.4: Blog information as of April 4th, 2017.

URL (http://*.blogspot.ca) Posts Mean Words Diagnosis Gender/Age

living-with-alzheimers 344 263.03 (s=140.28) AD M, 72 (approx)
creatingmemories 618 242.22 (s=169.42) AD F, 61
parkblog-silverfox 692 393.21 (s=181.54) Lewy Body M, 65
journeywithdementia 201 803.91 (s=548.34) Control F, unknown
earlyonset 452 615.11 (s=206.72) Control F, unknown
helpparentsagewell 498 227.12 (s=209.17) Control F, unknown

features, as shown in Table 6.1. We used 9-fold cross validation as in [29], where

each test fold contains all posts from one dementia blog and one control blog, and

the posts from the remaining four blogs were used in the training fold. The model

selection process was carried out as described in section 6.2.1.

Table 6.5: Binary classification with 9-fold cross-validation on blog corpus.

Model Accuracy F-score

Majority class 0.590 0.742
Masrani et al. [29] 0.724 0.785
HAN 0.579 0.582

The experiment results are summarized in Table 6.5. The traditional model

demonstrates that dementia can also be automatically predicted from written text

in the form of blog posts. However, the HAN model fails in this task. A key

difference that may explain this result, is that the samples in DementiaBank are

descriptions of one single picture and so are all about the same topic (i.e., same ob-

jects and events, resulting in a corpus vocabulary of 1828 word types). In contrast,

samples from the blog data cover a large variety of topics, ranging from regular

medical appointments to re-connecting an old friend on Facebook (with a much

larger vocabulary size of 27413). The HAN model succeeded in focusing on infor-

mative concepts shown in the Cookie Theft picture, with the help of the attention

layers. However, for blog data there are no such concepts shared across all blog

posts. Thus the data are likely not sufficient to cover such a much larger vocab-

ulary, resulting in the extremely poor performance of HAN. On the contrary, the
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traditional machine learning method is quite effective on blog posts, likely because

its large human engineered set of features also include features that are not lexi-

cally based (i.e., based on words), but instead capture task-independent aspects of

language like syntactic constituents and syntactic complexity.

To further explore the large difference in performance between neural and tra-

ditional methods on blog data, we conducted an additional experiment. Unlike the

original split setting where all posts from the same blog are contained either in the

training fold or the test fold, here we shuffle all the posts regardless which blogs

they belong to, and divide them into 10 folds for cross validation. In this scenario,

posts from the same blog will very likely appear in both the training and testing

data, creating a form of data contamination. Not surprisingly, the HAN model is

very accurate on this artificial task, with an average accuracy and F-score as high

as 0.934 and 0.944, respectively. This could be because HAN captures the writ-

ing style and topics of each blogger rather than informative patterns for dementia

prediction.

6.3 Discussion
We extend previous work based on traditional machine learning methods and engi-

neered features, by applying a neural model on language samples of elderly people

to classify dementia patients from healthy controls. When not including the de-

mographic feature (age), HAN matches the performance of the best model without

age. By incorporating age as extra information, the model not only achieves the

state-of-the-art performance on the DementiaBank dataset, but can give a decent

prediction accuracy even when trained with a small portion of the available data.

Visualization and statistical analysis reveal that the attention mechanism of the

model manages to capture similar key concepts as the information unit features

specified by human experts. Meanwhile, the blog experiment results indicate that

HAN is not a universal classifier for predicting dementia from language. In the task

where samples are not all about a single topic, a traditional model that exploits lin-

guistic features (e.g., syntactic complexity, context-free grammar rules) is a better

choice than HAN.
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Chapter 7

Conclusions and Future Work

Early prediction of dementia is extremely important, as researchers believe that

early diagnosis will be key to slowing and stopping the disease. Currently, a diag-

nosis is based on clinical expertise and cognitive screening tests, which have lim-

ited accuracy in earlier stages of disease, or invasive and resource-intensive testing,

such as lumbar puncture or specialized neuroimaging. In this study, we tackled the

problem of predicting dementia from language. In particular, we explored neural

network models in the direction of avoiding any task-specific features, which could

be easily generalized to other language datasets of dementia. This thesis has made

three main contributions towards this effort.

First, we proposed to use a joint embedding approach to combine two mul-

timodal task-agnostic feature groups, i.e., linguistic and acoustic features. The

experiment results on the DementiaBank dataset showed that our models using the

pairwise ranking scheme give performances comparable to baseline models using

feature selection.

Secondly, we proposed a novel feature about discourse coherence, which is

also task-agnostic for dementia prediction. Unlike previous linguistic features that

tried to detect language differences at a lexical and syntactic level, the new coher-

ence feature aimed at capturing the language changes caused by AD in a higher

level. We applied a neural coherence model [32] based on the Centering theory to

generate coherence scores for the DementiaBank dataset. The logistic regression

classifier using the coherence score as the only feature outperformed the majority
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class baseline by 4%. However, the coherence feature did not perform well when

used together with other task-agnostic features. Our analysis indicated that AD

patients and healthy controls do not show much difference with respect to this type

of coherence, on the task of describing the Cookie Theft picture, possibly because

such task does not seem to require mentioning the same entity repeatedly too many

times.

Lastly, we applied Hierarchical Attention Networks (HAN) framework [38] for

dementia prediction, which does not require any feature engineering. Our experi-

ments on the DementiaBank dataset showed that HAN obtained comparable results

to traditional models that use task-specific features, and the modified HAN-AGE

model achieved new state-of-the-art classification performance. In experiments of

attention mechanism analysis, we found that the words emphasized by the attention

model overlapped but differ from the information units defined by human experts.

Further investigation for explaining this difference is left as future work. More-

over, we evaluated the HAN model on a dementia blog dataset. Interestingly, the

same neural model did not work well on this corpus of written text, suggesting that

dementia prediction from language may require different methods depending on

the genre of the source language.

Although our task-agnostic methods were only tested on an English dataset

describing the Cookie Theft picture, it could be generalized to other cultures and

languages. It would be particularly useful for applying such methods in developing

countries, which have an even more pressing need for inexpensive solutions.

Currently, a key limitation of predicting dementia from language is the scarcity

of related data sets. The DementiaBank dataset seems to contain sufficient data

(257 AD samples and 242 controls) to train neural text categorization models like

HAN. However, there are only 5 vascular dementia samples and no sample at all

for other types of dementia (e.g., dementia with Lewy body). Automatic prediction

of different sub-types of dementia will not be possible until more data is collected.

Moreover, one interesting area of future work would be collecting a dataset

with other modalities. Specifically, in a picture description task we could record

the facial expressions of participants through a camera and their eye movements

through an eye tracker. Similar ideas have been explored by Fraser et al. [13] and

Poria et al. [35]. With data sources containing more than just speech, we could for
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instance extract new features and apply multimodal learning methods to this new

dataset, and might potentially achieve even better performance than what reported

in this thesis.
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