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Abstract

Image captioning is an active research area in the inter-
section of vision and language. However, previous works
all require each training image annotated with at least one
ground-truth caption. That is, they are all fully-supervised
models. In this work, we propose an end-to-end model that
can generate image captions in a semi-supervised setting.
This means that our model can be trained using an image
set with only part of the images annotated with ground-truth
captions. We adopt an idea of reconstruction that helps
us to use images without paired captions during training.
We conduct experiments on the MSCOCO dataset [S] with
image annotation rates as 100%, 50%, 25%, and 12.5%.
Results show that when image annotation rates are low,
our model achieves better captioning results than standard
Sfully-supervised models.

1. Introduction

Image captioning is an important task in the intersection
of computer vision and natural language processing that has
many valuable applications. The task is mainly given an
image, letting a model produce one or several captions for
the image. While this task is relatively easy and obvious
for humans, it is complicated for machines to understand an
image and produce a relevant caption corresponding to the
image.

The image captioning task has attracted much research
attention. There has been strong progress made on this
task. However, previous works all solve this task in a fully-
supervised setting, and no prior attempt has been made to
generate image captions in a semi-supervised way.

Semi-supervised learning is the idea of making use of
unlabeled data for training, typically a small amount of la-
beled data with a large amount of unlabeled data. In terms
of the image captioning task, it is easy to obtain a large im-
age set and a big language set, but it is difficult to build a
large image-language dataset where each image paired with
several captions. Therefore, it is important to build an image
captioning model which can be trained in a semi-supervised
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Figure 1: The high-level structure of our model. 1) In the
captioning phase, an image feature is first extracted from
the given image via a CNN and then fixed. A corresponding
caption is generated using a RNN based on the fixed image
feature. In the reconstruction phase, the generated caption
is first encoded by a RNN and then transformed through a
fully-connected layer to reconstruct back the image feature.
The training objective is to minimize the mean square er-
ror (MSE) between the reconstructed image feature and the
fixed original image feature. 2) If a training image comes
with a ground-truth caption, a cross-entropy loss is applied
between the generated caption and the ground-truth caption.

way.

We introduce an novel semi-supervised approach to gen-
erate image captions. The overall high-level structure is
shown in Fig. 1. Our model has two phases, a caption-
ing phase and a reconstruction phase. In the captioning
phase, given an image, we first use a convolutional neu-
ral network (CNN) to extract its feature. Then we fix the
image feature, and use a recurrent neural network (RNN)
to generate its corresponding caption. In the reconstruc-
tion phase, the generated caption is first encoded via a RNN
and then transformed using a fully-connected layer to re-
construct back the image feature. Because word samples
in captions are discrete, it will be problematic to directly
backpropage gradients through them during training. We
apply the Gumbel-Softmax approximation [5] [9] between
the captioning phase and the reconstruction phase to tackle
this issue. Gumbel-Softmax approximation is a continues
relaxation combined with the re-parametrization of the sam-
pling process which allows backpropogation through sam-



ples from a categorical distribution.

A reconstruction loss is calculated between the recon-
structed image feature and the fixed original image feature.
This penalizes for the caption not capturing the correct im-
age feature. If an training image is paired with a ground-
truth caption, additional supervision is integrated into our
model by adding a cross entropy loss penalizing incorrect
words in the generated caption directly. At test time, we
evaluate how the captions generated by our model are close
to the ground-truth captions.

Our model can generate captions associated with images
with a small amount of training images paired with ground-
truth captions. The reconstruction phase is the key in our
solution. We evaluate our model on the MSCOCO dataset
[8]. We show that when the image annotation is limited,
our model achieves better results than the standard fully-
supervised image captioning models.

2. Related Work

Image Captioning. Image captioning is currently an ac-
tive research area. [16] presents a generative model max-
imizing the likelihood of the target description sentence
given the training image with a vision CNN and a lan-
guage generating RNN. [6] proposes an alignment model
that maps words and image regions into a common multi-
modal embedding space. They then use a multimodal RNN
to generate image descriptions by using the inferred align-
ments. [14] tackles the problem of generating a set of im-
age captions that is indistinguishable from human written
captions. [2] focuses on producing semantically relevant,
natural and diverse sentences for images. They constructed
a conditional-GAN based model which jointly learns a gen-
erator for image captions and an evaluator to evaluate the
quality of the generated descriptions. However, all of these
previous works fall into the fully-supervised learning re-
gion, while our model can generate image captions in a
semi-supervised setting.

Reconstruction. The idea of reconstruction makes train-
ing with partially annotated data possible. [12] proposes a
model to ground texts to images with all levels of bound-
ing box supervision. In their semi-supervised and unsu-
pervised frameworks, reconstructing a given phrase enables
the model to work with unlabeled data. In this work, we
share the same idea with this paper of using reconstruction.
Under the semi-supervised setting, we add a reconstruction
component to our model. The reconstruction component
enables us to train our model using images without ground-
truth captions.

Gumbel-Softmax Approximation. The idea of
Gumbel-Softmax approximation is first proposed in [5] and
[9]. Specifically, [5] presents a efficient gradient estimator
that approximates the non-differentiable categorical distri-
bution using a differentiable Gumbel-Softmax distribution.

[9] introduces continuous relaxations of discrete random
variables to re-factor discrete stochastic nodes of a com-
putation graph into one-hot bit representations. [14] uses
the Gumbel-Softmax approximation to backpropagate the
gradients from the discriminator to the generator in their
GAN-based image captioning model. Similarly, we incor-
porate the Gumbel-Softmax approximation into our model
to tackle the discreteness problem between the captioning
phase and the reconstruction phase.

Initially, we also considered applying a caption discrim-
inator with Maximum Mean Discrepancy loss as in [17] on
the generated caption. Ideally, this will help regularize the
generated caption to be realistic-looking. However, due to
the time limit, we are not able to implement the caption dis-
criminator for now, which will be our future work.

3. Model

Our model is shown in Fig. 2, which generally has two
phases, a captioning phase and a reconstruction phase.

Given an image, we first use the ResNet-152 [4] model to
extract the image feature. The image feature is fixed. The
captioning phase contains two parts, one projection layer
and one caption decoder. We first use the projection layer
to change the dimension of the image feature and then feed
it to the caption decoder. The caption decoder will gen-
erate a caption based on the projected image feature. The
reconstruction phase also contains two parts, one caption
encoder and one transforming layer. The caption generated
by the caption decoder will be encoded as a feature vector
by the caption encoder. Then we use the transforming layer
to transform the caption feature to something like an im-
age feature, which we call reconstructed image feature. A
mean square error (MSE) loss is applied between the recon-
structed image feature and the fixed extracted image feature
to train the network. We use the Gumble-Softmax approxi-
mation [5] [9] between the caption decoder and the caption
encoder to allow backpropogate gradients among the dis-
crete word samples during training.

If the given image is annotated with a ground-truth cap-
tion, we add another cross entropy loss between the gen-
erated caption (after Gumbel-Softmax approximation) and
the ground-truth caption. We only use the captioning phase
at test time. The model detail is described below.

3.1. Data Preprocessing

Image feature representation. We use the image fea-
ture extracted right before the last softmax layer from the
ResNet-152 [4] model pre-trained on ImageNet [13]. The
dimension for the image feature vector is 2048. We fix the
image feature for training and testing our model.

Word vocabulary and preprocessing. We put all the
words appeared in the training sentence set more than 4
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Figure 2: Our model has two phases, a captioning phase and a reconstruction phase. The captioning phase includes a
projection layer and a caption decoder. The reconstruction phase consists of a caption encoder and a transforming layer.

times into our word vocabulary. We also add a special to-
ken <SOS> to indicate the start of the sentence and a spe-
cial token <EOS> to indicate the end of the sentence. We
prepend the <SOS> token and append the <EOS> token to
each training sentence. After the vocabulary is built, we use
the pre-trained Word2Vec [10] embedding model to repre-
sent the words. For the word representations, the dimension
we choose is 300.

3.2. Captioning Phase

Projection layer. With the extracted fixed image fea-
ture, we use a projection layer to change its dimension. The
projection layer is a single fully-connected layer with ReLU
activation. It transforms the dimension of the image feature
from 2048 to 512, which is the same as the hidden state
dimension of the caption decoder and the caption encoder.

Caption decoder. We use a single RNN with LSTM
units as the caption decoder to generate the image caption
based on the projected image feature. The hidden state di-
mension is 512. We use the projected image feature vec-
tor as the initial hidden state of the caption decoder. We
apply the Gumble-Softmax approximation on the output of
the LSTM unit. We treat the output at each time step as a
word in the generated caption. The input at the first time
step is the <SOS> token. If the image does not have a

annotated caption, the input to the following time step is
the output (after Gumble-Softmax approximation) from the
previous time step. Otherwise, the input to the following
time step is the following word in the ground-truth caption.
The inputs are all applied with the Word2Vec [10] embed-
ding. The caption is finished generating until the <EOS>
token is generated.

3.3. Reconstruction Phase

Caption encoder. For the generated caption (after
Gumble-Softmax approximation), we use another RNN
with LSTM units to encode it. We initialize the hidden state
of the caption encoder using a zero vector. The hidden state
dimension is also 512. At each time step, the input to the
caption encoder is the corresponding output from the cap-
tion decoder applied with the Word2Vec [10] embedding.
We use the hidden state vector at the last time step of the
caption encoder to represent the generated caption.

Transforming layer. After the caption feature vector is
obtained, we employ a transforming layer to translate the
caption feature to something like an image feature. We
implement the transforming layer using a fully-connected
layer with ReLU activation. The output dimension of the
transforming layer is 2048, which is the same as the fixed
extracted image feature dimension.
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Figure 3: Beseline Models. (a) Baseline 1 is our model without the caption encoder and the MSE loss (the reconstruction
phase). (b) Baseline 2 is Baseline 1 without the Gumbel-Softmax approximation.

3.4. Discreteness Problem

When training our model, we need to backpropogate
gradients from the caption encoder to the caption decoder.
However, since words are discrete samples, this makes
the standard backpropagation a problem. We adopt the
Gumbel-Softmax approximation [5] [9] to tackle this is-
sue. Gumbel-Softmax approximation is a continuous re-
laxation of discrete random variables, combined with a
reparametrization trick. It consists of two steps.

First, the Gumbel-Max trick [3] is applied to
reparametrize sampling from a categorical distribution.
Given a random variable r drawn from a categorical distri-
bution parametrized by [01, 05, ..., 0,,] where n is the num-
ber of categories, r can be expressed as

r = one_hot |argmax(g; +log ;)| , (L

where g;’s are i.i.d. standard gumbel distributed random
variables, which can be simply computed as

g = —log(—log(u)) 2)

where u is drawn from a uniform distribution in the range
(0,1).

Next, approximate the argmax operation in Equation (1)
with softmax, which results in a continuous and differen-
tiable variable

r’ = softmax

i + log 0;
[H:g} 3)

where 7 is a temperature parameter which controls how
close ' istor. v’ = r when 7 = 0.

As in [14], we use the straight-through variation of the
Gumbel-Softmax approximation [5] at the output of the
caption decoder. That is, we use r in the forward pass and
r’ is the backword pass to allow backpropogation during
training. In all our experiments, we set 7 = 1.

3.5. Loss Functions

MSE loss. A mean square error (MSE) loss is applied
between the generated image feature and the fixed extracted
image feature. For a d-dimension input vector = and a d-
dimension target vector ¥, the MSE loss is calculated as

1
MSE loss = - |lo — yll3. @)

Cross entropy loss. During training, if an image comes
with a ground-truth caption, a cross entropy loss is also ap-
plied between the generated caption (after Gumble-Softmax
approximation) and the ground-truth one. The cross entropy
loss is a combination of the log-softmax operation and a
negative log likelihood loss.

3.6. Model Weights Initialization

We train a purely language auto-encoder using the train-
ing sentence set. The structure of the encoder is the same
as the caption encoder, and its hidden state is initialized as
a zero vector. The structure of the decoder is the same as
the caption decoder, but its hidden state is initialized as the
last hidden state of the encoder. We train the auto-encoder
on the training sentence set for 4 epochs. Then use the
weights of the decoder/encoder of the auto-encoder as the
initial weights of the caption decoder/caption encoder. For
the projection layer and transforming layer (fully-connected
layers), the weights are initialized as random numbers sam-
pled from a standard normal distribution and biases are ini-
tialized as zeros.

4. Experiments
4.1. Baselines

We build two baselines. Baseline 1 is our model with-
out the caption encoder and the MSE loss, that is, with-
out the reconstruction phase. This model is illustrated in
Fig. 3a. The cross entropy loss is still applied between
the generated caption (after Gumbel-Softmax approxima-
tion) and the ground-truth ones. This aims to show the ef-
fectiveness of the reconstruction phase in our model. To



Anno. Rate Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE_L | CIDEr
Our Model | 0.664 0.481 0.335 0.232 0.219 0.484 0.747

100% Baseline 1 0.666 0.483 0.336 0.232 0.220 0.486 0.746
Baseline 2 0.669 0.483 0.336 0.233 0.221 0.486 0.750

Our Model | 0.655 0.466 0.319 0.216 0.215 0.477 0.704

50% Baseline 1 0.651 0.464 0.319 0.218 0.212 0.475 0.689
Baseline 2 0.643 0.453 0.307 0.208 0.210 0.468 0.666

Our Model | 0.638 0.449 0.301 0.200 0.208 0.468 0.651

25% Baseline 1 0.627 0.437 0.290 0.193 0.200 0.459 0.610
Baseline 2 0.627 0.431 0.284 0.189 0.197 0.455 0.588

Our Model | 0.617 0.431 0.288 0.192 0.199 0.453 0.596

12.5% Baseline 1 0.495 0.287 0.159 0.094 0.140 0.367 0.211
Baseline 2 0.531 0.337 0.205 0.127 0.160 0.394 0.336

Table 1: Quantitative results for the pre-trained models.

Anno. Rate Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE_L | CIDEr
Our Model | 0.676 0.493 0.346 0.241 0.224 0.493 0.773

100% Baseline 1 0.677 0.497 0.349 0.243 0.226 0.495 0.779
Baseline 2 0.673 0.492 0.345 0.240 0.222 0.491 0.766

Our Model | 0.650 0.464 0.317 0.216 0.212 0.475 0.691

50% Baseline 1 0.665 0.481 0.333 0.228 0.217 0.484 0.726
Baseline 2 0.650 0.464 0.317 0.214 0.214 0.475 0.692

Our Model | 0.577 0.366 0.221 0.137 0.167 0.413 0.392

25% Baseline 1 0.617 0.425 0.277 0.182 0.192 0.448 0.557
Baseline 2 0.623 0.434 0.290 0.194 0.202 0.459 0.610

Our Model | 0.454 0.261 0.138 0.062 0.131 0.347 0.095

12.5% Baseline 1 0.519 0.273 0.122 0.057 0.121 0.349 0.069
Baseline 2 0.407 0.168 0.064 0.032 0.108 0.304 0.047

Table 2: Quantitative results for the models without pre-training.

show that whether the Gumbel-Softmax approximation will
largely change the model performance, we build the second
baseline, Baseline 2, which is shown in Fig. 3b. Baseline 2
is Baseline 1 without the Gumbel-Softmax approximation.
In this model, the cross entropy loss is applied between the
output directly from the caption decoder and the ground-
truth captions.

4.2. Dataset and Evaluation Metrics

We use the MSCOCO dataset [8] with the 2014
train/validation split to train and evaluate the models. This
dataset version has 82783 training images and 40504 vali-
dation images. Each training/validation image is annotated
with at least 5 ground-truth captions. We randomly split
half of the validation data as test set and the remaining as
the validation set used during training. We use the whole
training data in the training stage. The built vocabulary has
size 8855.

We use the commonly used language evaluation metrics
to evaluate the models. The language evaluation metrics

include BLEU-1,2,3,4 [
and CIDEr [

late these scores

], METEOR [1], ROUGE-L [7],
]. We use the code available online to calcu-

4.3. Results

We conduct experiments with image annotation rates as
100%, 50%, 25%, and 12.5%. The image annotation rate
is how many percent of images in the training set annotated
with ground-truth captions. We use these percentages of
images with their ground-truth captions to train the base-
lines, since the baselines are standard fully-supervised im-
age captioning models. For our model, besides using these
annotated images, we also include the remaining images in
the training set without annotations during training.

As mentioned in section 3.6, the weights of the caption
decoder and the caption encoder in our model and baselines
are initialized as the weights of a pre-trained auto-encoder.
We refer these models as pre-trained models or models with
pre-training. To validate the usefulness of using the pre-

lhttps ://github.com/tylin/coco—-caption
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Anno. Rate Model Generated Caption
Our Model a man playing tennis on a tennis court.
S 100% Baseline 1 a man playing tennis on a tennis court.
@ TENNIS Baseline 2 a man is playing tennis on a court.
e : Our Model aman is playing tennis on a tennis court.
il 50% Baseline 1 a woman is holding a tennis racket and ball.
Baseline 2 a woman in a short skirt holding a tennis racket.
Our Model a man is playing tennis on a court
i 25% Baseline 1 a man in a blue shirt is playing tennis
: §§ Baseline 2 aman in a red shirt is playing tennis
i Our Model a tennis player is swinging his racket on the court.
12.5% Baseline 1 aman in a suit is standing in the grass.
Baseline 2 | a man in a baseball uniform swinging his bat at a pitch.
Our Model a man holding a surfboard walking in the water.
100% Baseline 1 a man holding a surfboard on a beach.
Baseline 2 a man holding a surfboard on the beach.
Our Model a man holding a surfboard on top of a beach.
50% Baseline 1 a man holding a surfboard on top of a beach.
Baseline 2 a man holding a surfboard on a beach.
Our Model a man is holding a surfboard in the water.
25% Baseline 1 a man in a suit and a suit holding a kite.
Baseline 2 a man and a woman are on a beach.
Our Model a man in a wet suit is holding a surf board
12.5% Baseline 1 a man in a suit is standing in the snow.
Baseline 2 aman in a wet suit is surfing on a wave.

Table 3: Sample qualitative results for the pre-trained models.

trained weights, we also conduct the same experiments to
all the three models without using the pre-trained weights.
We refer these models without using the pre-trained weights
as models without pre-training.

Implementation details. We use PyTorch? framework
to build all the models. We use Adam optimizer to train all
the network components. For the pre-trained models, the
initial learning rates for the linear layers are 0.001, and are
set to 0.0008 for the RNNs. For the models without pre-
training, we set the initial learning rates for all the network
components as 0.001.

4.3.1 Quantitative Results

The quantitative results in terms of BLEU-1,2,3,4[1 1], ME-
TEOR [1], ROUGE-L [7], and CIDEr [15] scores for the
pre-trained models are shown in Table 1. The results for the
models without pre-training are shown in Table 2.
According to Table 1, when the image annotation rate is
100%, our model is comparable to the standard image cap-
tioning models, Baseline 1 and Baseline 2. When the image
annotation rate is 50% or 25%, the advantage of our model
appears. Our model outperforms the two baselines in terms

’http://pytorch.org/

of all the seven scores except the BLEU-4 score when the
image annotation rate is 50%, and when the image annota-
tion rate is 25%, our model outperforms the two baselines
for all the seven scores. When the image annotation rate
decreases to 12.5%, the advantage of our model becomes
significant. In this setting, both baselines can not produce
reasonable captions for images, while our model can gener-
ate relatively good captions. This is also illustrated by the
qualitative results shown below.

Comparing the results in Table 1 and Table 2, it is neces-
sary to use the pre-trained weights to initialize the caption
decoder and the caption encoder of our model to achieve
good caption results when the image annotation rate is low
(25% and 12.5%). For our model, there is too many de-
grees of freedom from the extracted image feature to the
reconstructed image feature. It is essential to add some reg-
ularizer or language priors onto our model.

Comparing the performance of Baseline 1 and Baseline
2, we can see that using Gumbel-Softmax approximation
will not much change the results.

4.3.2 Qualitative Results

We show some sample qualitative results for the pre-trained
models in Table 3 and for the models without pre-training in
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Anno. Rate Model Generated Caption
Our Model a woman is playing tennis on a court
o 100% Baseline 1 a man is playing tennis on a tennis court.
@ TENNIS Baseline 2 | a woman in a white shirt and black shorts playing a game of tennis.
Our Model a woman in a blue shirt is playing tennis
50% Baseline 1 a man is playing tennis on a tennis court.
Baseline 2 a man is playing tennis on the court
Our Model a man in a red shirt is playing tennis
25% Baseline 1 a man in a red shirt is playing tennis
Baseline 2 a man holding a tennis racket on a tennis court.
Our Model a man is sitting on a bench next to a woman.
12.5% Baseline 1 a man is sitting on a bench in the park.
Baseline 2 a man in a suit and tie is standing by a fence.
Our Model a man holding a surfboard walking in the water.
100% Baseline 1 a man holding a surfboard on the beach.
Baseline 2 a man holding a surf board on a beach.
Our Model a man in a wet suit is on a surfboard.
50% Baseline 1 a man holding a surfboard on a beach.
Baseline 2 a man standing on a beach holding a surf board.
Our Model a man is surfing on a wave in the ocean.
25% Baseline 1 a man in a wet suit is surfing on a wave
Baseline 2 a man holding a surfboard on top of a beach.
Our Model a man is sitting on a bench next to a woman.
12.5% Baseline 1 a man is sitting on a bench in the park.
Baseline 2 aman in a suit and tie is standing by a fence.

Table 4: Sample qualitative results for the models without pre-training.

Table 4. From these qualitative results, we can see that our
model can, while the baselines can not, produce relatively
good captions for images when the image annotation rate is
low. It is necessary to use the pre-trained weights for our
model to achieve these results.

5. Conclusion and Discussion

In this work, we propose an image captioning model
using the idea of reconstruction that can generate image
captions in a semi-supervised learning setting. We show
that our model can generate relatively good image captions
when only a small amount of training images are annotated
with ground-truth captions.

Future work can be in the direction that adapting the cur-
rent model to generate image captions unsupervisedly. Ac-
tually, we have also trained the current model with 6.25%,
3.125%, and even 0% of training images being annotated.
However, the captioning results of our model are not good
under these settings. To modify the current model to fit even
lower image annotation rates or in a unsupervised learning
setting, one way is to incorporate the idea of generative ad-
versarial networks. We think that it will be beneficial to
add a caption discriminator to discriminate the quality of
the caption generated by the caption decoder in these set-

tings.
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